Ethanol causes inflammation in the airways by a neurogenic and TRPV1-dependent mechanism.

نویسندگان

  • Marcello Trevisani
  • David Gazzieri
  • Francesca Benvenuti
  • Barbara Campi
  • Q Thai Dinh
  • David A Groneberg
  • Michela Rigoni
  • Xavier Emonds-Alt
  • Christophe Creminon
  • Axel Fischer
  • Pierangelo Geppetti
  • Selena Harrison
چکیده

Ethanol (EtOH) stimulates peptidergic primary sensory neurons via the activation of the transient receptor potential vanilloid-1 (TRPV1). EtOH is also known to trigger attacks of asthma in susceptible individuals. Our aim was to investigate whether EtOH produces airway inflammation via a TRPV1-dependent mechanism and to verify whether this effect is produced via a mechanism distinct from that of acetaldehyde (AcH). EtOH caused a Ca(2+)-dependent release of neuropeptides from guinea pigs airways, an effect that was inhibited by both capsaicin pretreatment and the TRPV1 antagonist capsazepine (CPZ). Furthermore, EtOH contracted isolated guinea pig bronchi, showing efficacy similar to that of carbachol: this effect of EtOH was sensitive to capsaicin pretreatment, tachykinin receptor blockade, and TRPV1 antagonism. The EtOH metabolite AcH also contracted isolated guinea pig bronchi, but this action was not affected by capsaicin pretreatment, tachykinin receptor, or TRPV1 antagonism. EtOH by intravenous or intragastric route of administration caused bronchoconstriction and increased plasma extravasation in the guinea pig airways, effects that were abolished selectively by CPZ. In conclusion, we have demonstrated that EtOH stimulates peptidergic primary sensory neurons in the guinea pig airways by TRPV1 activation. This excitatory effect of EtOH, distinct from that of AcH, results in neurogenic inflammatory responses that may contribute to the mechanism of EtOH-induced asthma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation

BACKGROUND The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possib...

متن کامل

Surfactant-induced TRPV1 activity--a novel mechanism for eye irritation?

The pain receptor transient receptor potential vanilloid type 1 (TRPV1) has been reported as one of the key components in the pain pathway. Activation of the receptor causes a Ca2+ influx with secondary effects leading to neurogenic inflammation. Here we report specific activation of TRPV1 by detergent-containing hygiene products measured as intracellular Ca2+ influxes in stably TRPV1-expressin...

متن کامل

Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin

BACKGROUND Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates th...

متن کامل

Contribution of potassium channels, beta2-adrenergic and histamine H1 receptors in the relaxant effect of baicalein on rat tracheal smooth muscle

Objective(s): Baicalein, a compound extracted from a variety of herbs, showed various pharmacological effects. This study evaluated the relaxant effects of baicalein and its underlying molecular mechanisms of action on rat’s isolated tracheal smooth muscle.Materials and Methods: Tracheal smooth muscle were contracted by 10 μM methacholin...

متن کامل

TRPV1+ Sensory Neurons Control β Cell Stress and Islet Inflammation in Autoimmune Diabetes

In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 309 3  شماره 

صفحات  -

تاریخ انتشار 2004